Tiven Wang
Wang Tiven March 18, 2020
425 favorite favorites
bookmark bookmark
share share

This short introduction uses Keras to:

下面是一个完整的数字图片识别的程序

import tensorflow as tf

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

print(x_test.shape)

model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(128, activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10)
])

loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)

model.compile(optimizer='adam',
              loss=loss_fn,
              metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)

probability_model = tf.keras.Sequential([
  model,
  tf.keras.layers.Softmax()
])

probability_model(x_test[:5])

对我来说重点是理解 The Sequential model 是干什么的?

layers.Dense

https://keras.io/zh/getting-started/sequential-model-guide/

Similar Posts

Comments

Back to Top